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The constraint satisfaction problem with template A is the
problem CSP(A): Given B , decide if there is a homomorphism
B → A.

Theorem [Bulatov, 2017; Zhuk 2017].
For each finite template A either
1. CSP(A) is NP-complete, or
2. CSP(A) is in P.

Theorem [Bulatov, Jeavons, Krokhin, 2005].
The following are equivalent for finite templates A and
B :
1. CSP(A) reduces to CSP(B) via a gadget reduction

(and hence in log-space);
2. pol(B) → pol(A).

Theorem [Hell & Nešetřil, 1990].
Let H be a graph. If H is non-bipartite, then H-colouring
problem is NP-complete. Otherwise, it is in P.
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of constraint satisfaction problems?

Part I.What problems am I talking about?
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Graph colouring

G

H

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

Example. A colouring of a graph G with k colours is just a homomorphism c : G → Kk .
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The H-colouring problem

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

H-colouring
Fix a graph H (called template). Given a graph G , decide whether there is a homomorphism G → H .

▶ K2-colouring is easy (it is solvable in logspace [Reingold, 2005]);
▶ Kk -colouring is NP-complete for all k > 2.
▶ What about other graphs H?

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.



Why is homotopy theory so effective in computational complexity
of constraint satisfaction problems?

Part II. A proof



Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.
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Categorical approach to the constraint satisfaction problem

Fix a presheaf A : S → Fin where S is a finite
category.

CSP(A) is the decision problem:
Given B : S → Fin, decide if ∃f : B → A.

Example.
A (di)graph G = (V G ,EG ) where EG ⊆ V G × V G

can be interpreted as a presheaf G ′ : E → Fin where
E is the category:

E V
s

t

with G ′(V ) = V G and G ′(E ) = EG where

G ′(s) : (u, v) 7→ u

G ′(t) : (u, v) 7→ v

Gadget reductions

CSP(K 5) ≤gadget CSP(C 5)

If a functor L : [S, Fin] → [T , Fin] admits a right
adjoint R : [T , Fin] → [S, Fin], then it is a reduction

CSP(RA) ≤gadget CSP(A).
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Categorical approach to the constraint satisfaction problem (cont.)

Theorem.
CSP(A) ≤gadget CSP(A

′) iff there is a natural
transformation pol(A′) → pol(A).

A polymorphism of A is a homomorphism f : An → A.

pol(A) : Fin → Fin

n 7→ {f : An → A}

Lemma.
If A : S → Fin, then pol(A) = RanA A.

PCSP(A,B): Given C decide between

YES C → A;

NO C ̸→ B .

Proof.
CSP(A) ≈gadget PCSP(1Fin, RanA A)

[Fin, Fin] [S, Fin]−◦A
⊥

⊥

LanA

RanA

▶ − ◦ A is a reduction from PCSP(1Fin, RanA A) to CSP(A):
▶ ifM → 1Fin, thenM ◦ A → 1Fin ◦ A = A;
▶ ifM ◦ A → A, thenM → RanA A.

▶ LanA is a reduction from CSP(A) to PCSP(1Fin, RanA A):
▶ if B → A, then B → 1Fin ◦ A and hence

LanA B → 1Fin;
▶ if LanA B → RanA A, then

B → A ◦ RanA A → A.
LanA − ◦ A′ is a reduction from CSP(A′) to CSP(A) iff
pol(A′) → pol(A). ■
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Algebraic approach to the constraint satisfaction problem

An operation t : An → A is Taylor

t(x ∗ ... ∗) ≈ t(y ∗ ... ∗)
t(∗ x ... ∗) ≈ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≈ t(∗ ∗ ... y)

for all x , y ∈ A.

Lemma [Taylor, 1977].
If a topological space X admits a continuous
idempotent Taylor operation t , then π1(X ) is Abelian.
t : An → A is idempotent if t(x , ... , x) ≈ x .

Theorem [Taylor, 1977].
For a finite graph (presheaf) A, the following are
equivalent:
1. admits a Taylor homomorphism t : An → A;
2. pol(A) ̸→ 1Fin.

Theorem [Bulatov, 2005; Siggers, 2005].
A loopless core graph H has a Taylor homomorphism if
and only if it is bipartite.
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Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic categorical approach to the constraint
satisfaction problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
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Solution posets: Multihomomorphisms

A multihomomorphism is a function
f : V (G ) → 2V (H) \ {∅} such that, for all edges
uv ∈ E (G ), we have that

f (u)× f (v) ⊆ E (H).

▶ Multihomomorphisms are naturally ordered

f ≤ g ⇔ f (u) ⊆ g(u) for all u

▶ mhom(G ,H) is the poset of
multihomomorphisms.

K2 → K3

0 1 →
0 1

2

0–1 0–2 2–1 1–2 2–0 1–0

0–12 02–1 01–2 2–01 1–02 12–0

2–0

12–0

1–0
1–02

1–2

01–2

0–2

0–12

0–1
02–1

2–01

2–1
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Solution spaces

Given graphs G and H , we define the space

Hom(G ,H) = |N mhom(G ,H)|

▶ The vertices are multihomomorphisms,
▶ f and g are connected by an arc if f ≤ g ,
▶ {f , g , h} form a triangle if f ≤ g ≤ h,
▶ etc.

We view this as the solution space of instance G of
H-colouring.

Example. Hom(K2,K3) ≃ S1.
Example. Inmhom(K2,K4) we have:

0–1 ≤ 02–1 ≤ 02–13
and

0–1 ≤ 0–12 ≤ 0–123

which creates 2-dimensional faces.

Two colourings f and g are connected if g can be obtained from f by changing one value at a time while
remaining a valid colouring.



4-colourings of K2
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Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.
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Taylor→ contractibility

A topological space X is called contractible if it is homotopy equivalent to a point {∗}. For us, this is equivalent to
πn(X ) = 0 for all n ≥ 0.

Theorem [Larose, Zádori, 2005].
Every connected finite poset that admits a monotone Taylor operation is contractible.

The problem is thatmhom(G ,H) is not Taylor if H is Taylor!

Nevertheless, there is a lax-Taylor monotone operation t : mhom(G ,H)n → mhom(G ,H) that satisfies:

t(x ∗ ... ∗) ≥ s1(x , y) ≤ t(y ∗ ... ∗)
t(∗ x ... ∗) ≥ s2(x , y) ≤ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≥ sn(x , y) ≤ t(∗ ∗ ... y)

for all x , y ∈ A.

Theorem [Meyer, O, 2025].
Every connected finite poset that admits a monotone lax-Taylor operation is contractible, and therefore
Hom(G ,H) is component-wise contractible for all G if H has a Taylor polymorphism.
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4-colourings of K2

Hence, 4-colouring is NP-hard!



Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic categorical approach to the constraint
satisfaction problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise contractible.

3. Use Brower’s fixed-point theorem to show
that H has a loop if H is not bipartite.



A fixed-point theorem

Theorem (Brower’s fixed-point theorem).
Every continuous function f : Dn → Dn has a fixed point, i.e., there exists x ∈ Dn such that f (x) = x .

More generally: If X is a contractible compact CW-complex, then every function f : X → X has a fixed
point.
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A Z2-action on Hom(K2,H)

The space Hom(K2,H) admits an action of the group
Z2, i.e., there is a homeomorphism

ϕ : Hom(K2,H) → Hom(K2,H)

such that ϕ2(x) = x .

▶ ϕ is defined by flipping the two values of each
multihomomorphism.

▶ flipping the two values induces a monotone
involution on the poset, and hence a continuous
involution on the space.

▶ ϕ does not have a fixed point, otherwise H would
contain an edge uu.
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The proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K2,H).
Observe that the space admits a fixed-point free Z2-action
ϕ : X → X that for each multihomomorphismm flips the
values ofm(0) andm(1).
If H is not-bipartite then ϕ fixes a connected component
of X . Indeed, if uv is an edge of an odd cycle of H then uv
is connected to vu = ϕ(uv).
If H admitted a Taylor homomorphism,mhom(K2,H)
would admit a lax-Taylor operation, and all its connected
component would be contractible.
Hence, ϕ which acts on the component of uv has a fixed
point, the contradiction. ■
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