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Part I. What problems am | talking about?
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Graph colouring

e

Given two graphs G = (V;, Eg) and H = (Vy, Ey), a G — His amapping
h: Ve — Vjy that preserves edges,
uv € Eg = h(u)h(v) € Ep.

Example. A of a graph G with k colours is just a homomorphism c: G — K.



The H-colouring problem

Given two graphs G = (V;, Eg)and H = (Vy, Ey), a G — His amapping
: Vo — Vjy that preserves edges,
uv € Ec = h(u)h(v) € Ep.

H-colouring
Fix a graph H (called template). Given a graph G, decide whether there is a G — H.
» K,-colouring is easy (it is solvable in logspace )

» Kj-colouring is NP-complete for all k > 2.
» What about other graphs H?

Theorem .
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.
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Part Il. A proof
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algebraic approach to the

2. If H-colouring is not NP-hard, show that its
solution spaces are

H
>. 3. Use Brower's fixed-point theorem to show that

H has a loop if H is not bipartite.
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Categorical approach to the constraint satisfaction problem

Gadget reductions
Fix a presheaf A: & — Fin where &S is a finite

category. (A) is the decision problem:
Given B: S — Fin, decide if 3f: B — A. (Ks) <gadget (Cs)
A (di)graph G = (VG, EG) where E¢ C V& x V© A i S
can be interpreted as a presheaf G’: £ — Fin where ..
is the category: B *.
£ v & - <y
t
with G'(V) = V¢ and G'(E) = E© where K A
G'(s): (u,v) —u
G'(t): (u,v) = v If a functor L: [, Fin] — [7, Fin] admits a right
adjoint R: [/, Fin] — [5, Fin], thenitis a reduction

(RA) <gadger CSP(A).



Categorical approach to the constraint satisfaction problem (cont.)

Proof.
Theorem (A) Rlgadget (]-Fin, Ranga A)
(A) <gadget (A') iff there is a natural /LA\
) y n
transformation pol(A”) — pol(A). [Fin, Fin] — oA [<, Fin]
\}/
A of Ais a homomorphism f: A" — A. Rana
pol(A): Fin — Fin
n— {f: A" > A}
Lemma.

If A: S — Fin, then pol(A) = Rana A.

(A, B): Given C decide between
YES C — A
NO C 4 B.
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Categorical approach to the constraint satisfaction problem (cont.)

Theorem.
(A) <gadget (A') iff there is a natural
transformation pol(A’) — pol(A).
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Rany
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An operation t: A” — Ais

(x * . )=y = ... =)
(+ x . D t(xoy o ¢)
(- ST

forall x, y € A.

Lemma .
If a topological space X admits a continuous

idempotent , then 11(X) is Abelian.

: A7 — Ais idempotent if t(x, ..., x) = x.
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Theorem .
Unless P = NP, the only graph H-colouring problem that

is solvable in polynomial time is 2-colouring. 1. ldentify which problems are NP-hard using the

afgebraic categorical approach to the

2. If H-colouring is not NP-hard, show that its
solution spaces are
v e
3. Use Brower's fixed-point theorem to show that
H has a loop if H is not bipartite.




Why is homotopy theory so effective in computational complexity
of constraint satisfaction problems?



Why is homotopy theory so effective in computational complexity
of constraint satisfaction problems?

Intermezzo. What the ... is the solution space of H-colouring?
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» mhom(G, H) is the
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A is a function
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Solution spaces

Given graphs G and H, we define the space
Example.  Hom(Ky, K3) =~ S*.

Hom(G, H) = [N mhom(G, H)| Example.  In mhom(K>, K1) we have:
» The vertices are multihomomorphisms, 0-1 <02-1 <02-13
» f and g are connected by an arcif f < g, and
» {f,g, h} formatriangleif f < g < h,
> etc. 0-1 <0-12 <0-123
We view Fhis as the of instance G of which creates 2-dimensional faces.
H-colouring.
Two colourings f and g are if g can be obtained from f by changing one value at a time while

remaining a valid colouring.



4-colourings of K,
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Taylor — contractibility

A topological space X is called if it is homotopy equivalent to a point {x}. For us, this is equivalent to

m,(X)=0foralln>0.

Theorem
Every connected finite poset that admits a monotone is

The problem is that mhom(G, H) is not Taylor if H is Taylor!

Nevertheless, there is a monotone operation t: mhom(G, H)" — mhom(G, H) that satisfies:
Hx % e ) Zsilay) Sy ¢ o %)
t(x x .o o) Zsax,y)<t(x y .. %)
t( ) = sn(x, ) < 1 v)

forall x,y € A.

Theorem

Every connected finite poset that admits a monotone is
Hom(G, H) is forall G if H has a

, and therefore
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Theorem .
Unless P = NP, the only graph H-colouring problem that
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A fixed-point theorem

Theorem (Brower's fixed-point theorem).
Every continuous function f : D" — D" has a , I.e., there exists x € D" such that f(x) = x.

More generally: If X is a contractible compact CW-complex, then every function f: X — X has a
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A Zy-action on Hom( K, H)

The space Hom(K>, H) admits an action of the group
Z», i.e., there is a homeomorphism

¢: Hom(K>, H) — Hom(K>, H)

such that ¢?(x) = x.

» ¢ is defined by flipping the two values of each
multihomomorphism.

» flipping the two values induces a monotone
involution on the poset, and hence a continuous
involution on the space.

» ¢ does not have a , otherwise H would
contain an edge



The proof

Theorem .
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

T

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K>, H).

Observe that the space admits a fixed-point free Z,-action
¢®: X — X that for each multihomomorphism m flips the
values of m(0) and m(1).

If H is not-bipartite then ¢ fixes a connected component
of X. Indeed, if uv is an edge of an odd cycle of H then

is connected to vu = ¢(uv).

If H admitted a Taylor homomorphism, mhom(K,, H)
would admit a lax-Taylor operation, and all its connected
component would be contractible.

Hence, ¢ which acts on the component of uv has a fixed
point, the contradiction. |



How does the topology of the solution space
influence the complexity of a computational problem?
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