about

13 Jan 2024

My work lies at the interface of mathematics and computer science. I study the computational complexity of constraint satisfaction problems and their approximation and promise variants using universal algebra, homotopy theory, category theory, and logic.

I was a post-doc at ISTA (2022–23), Oxford (2021–22), Durham University (2018–21), TU Dresden (2016–18), and Jagiellonian University (2016). I received my PhD at Charles University in Prague on 29 Feb 2016. My advisor was Libor Barto.

upcoming

Dagstuhl 25211: The Constraint Satisfaction Problem
18–23 May 2025
Finite and Algorithmic Model Theory 2025
Les Houches, France, 25–30 May 2025
107th Workshop on general Algebra AAA107
Bern, Switzerland, 20–23 June 2025

selected papers

Meyer, S., & Opršal, J. (2025).

A topological proof of the Hell–Nešetřil dichotomy

SODA 2025, pp. 4507–4519.

doi:10.1137/​1.9781611978322.154, arXiv:2409.12627v2.


Dalmau, V., & Opršal, J. (2024).

Local consistency as a reduction between constraint satisfaction problems

LICS 2024, 29:1–15.

doi:10.1145/​3661814.​3662068, arXiv:2301.05084v3.


Krokhin, A., Opršal, J., Wrochna, M., & Živný, S. (2023).

Topology and adjunction in promise constraint satisfaction.

SIAM Journal on Computing, 52(1), 38–79.

doi:10.1137/​20M1378223, arXiv:2003.11351.


Barto, L., Bulín, J., Krokhin, A., & Opršal, J. (2021).

Algebraic approach to promise constraint satisfaction.

J. ACM, 68(4), 28:1–66.

doi:10.1145/​3457606