NP-hardness of colouring certain graphs with 3 colours via homotopy
Jakub Opršal

UNIVERSITYOF
BIRMINGHAM

Is there a polynomial time algorithm that colours a given 3-colourable graph by 3 colours?

Is there a polynomial time algorithm that colours a given 3-colourable graph by 3 colours?

No! (Unless P = NP) [Karp, 1972]

Is there a polynomial time algorithm that colours a given 3-colourable graph by 4 colours?

No! (Unless P = NP) [Khanna, Linial, Safra, 2000]

Is there a polynomial time algorithm that colours a given 3-colourable graph by 5 colours?

(We didn't know.)

Is there a polynomial time algorithm that colours a given 3-colourable graph by 6 colours?

(We don't know.)

Is there a polynomial time algorithm that colours a given 3-colourable graph by 7 colours?
(We don't know.)

Is there a polynomial time algorithm that colours a given 3-colourable graph by 1729 colours?
(We don't know.)

Is there a polynomial time algorithm that colours a given 3 -colourable graph by 2^{15} colours?

Is there a polynomial time algorithm that colours a given 3-colourable graph by $O(\log n)$ colours?

Is there a polynomial time algorithm that colours a given 3-colourable graph by $O\left(n^{<1 / 5}\right)$ colours?

Yes! [Kawarabayashi, Thorup, 2017]

Is there a polynomial time algorithm that colours a given 3-colourable graph by $O(\sqrt{n})$ colours?

> Yes! [Wigderson, 1982]

Is there a polynomial time algorithm that colours a given 3-colourable graph by 5 colours?

No! (Unless P = NP) [Bulín, Krokhin, O., 2019]

A black box: Algebraic approach

A black box: Algebraic approach

Theorem [Bulín, Krokhin, O., '19].
Let Γ and \triangle be two promise CSPs. If there is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$,
then there is a log-space reduction from Γ to \triangle.
(pol denotes the minion of all polymorphisms of the problem)

A black box: Algebraic approach

Theorem [Bulín, Krokhin, O., '19].
Let Γ and \triangle be two promise CSPs. If there is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$, then there is a log-space reduction from Γ to \triangle.
(pol denotes the minion of all polymorphisms of the problem)
There is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$ where

- \triangle is the problem of 27480-colouring 2-colourable 3-uniform hypergraphs,

A black box: Algebraic approach

Theorem [Bulín, Krokhin, O., '19].
Let Γ and \triangle be two promise CSPs. If there is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$, then there is a log-space reduction from Γ to \triangle.
(pol denotes the minion of all polymorphisms of the problem)
There is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$ where
$\triangle \Delta$ is the problem of 27480-colouring 2-colourable 3-uniform hypergraphs, which was proven to by NP-hard by [Dinur, Regev, Smyth, '05].

- 「 is 5-colouring 3-colourable graphs.

A black box: Algebraic approach

Theorem [Bulín, Krokhin, O., '19].
Let Γ and \triangle be two promise CSPs. If there is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$, then there is a log-space reduction from Γ to \triangle.
(pol denotes the minion of all polymorphisms of the problem)
There is a minion homomorphism pol $(\triangle) \rightarrow \operatorname{pol}(\Gamma)$ where

- \triangle is the problem of 27480-colouring 2-colourable 3-uniform hypergraphs, which was proven to by NP-hard by [Dinur, Regev, Smyth, '05].
- 「 is 5-colouring 3-colourable graphs.

Corollary [Bulín, Krokhin, O., '19].
Colouring graphs that are promised to be 3-colourable with 5 colours is NP-hard.

Chapter I: The story begins...

Chapter I: The story begins...

If colouring 3-colourable graphs with 3-colours is NP-hard, can we give a stronger promise to make the problem easier?

Andrei Krokhin \& O .

Chapter I: The story begins...

If colouring 3-colourable graphs with 3-colours is NP-hard, can we give a stronger promise to make the problem easier?

Andrei Krokhin \& O .

What stronger promise can we give?

What stronger promise can we give?

Given two graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, a graph homomorphism $G \rightarrow H$ is a mapping $h: V_{G} \rightarrow V_{H}$ that preserves edges,

$$
(u, v) \in E_{G} \Rightarrow(h(u), h(v)) \in E_{H} .
$$

What stronger promise can we give?

Given two graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, a graph homomorphism $G \rightarrow H$ is a mapping $h: V_{G} \rightarrow V_{H}$ that preserves edges,

$$
(u, v) \in E_{G} \Rightarrow(h(u), h(v)) \in E_{H} .
$$

Example. A colouring of a graph G with k colours is just a homomorphism $c: G \rightarrow K_{k}$.

What stronger promise can we give?

Given two graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, a graph homomorphism $G \rightarrow H$ is a mapping $h: V_{G} \rightarrow V_{H}$ that preserves edges,

$$
(u, v) \in E_{G} \Rightarrow(h(u), h(v)) \in E_{H} .
$$

Example. A colouring of a graph G with k colours is just a homomorphism $c: G \rightarrow K_{k}$.

Promise that the input graph maps to an odd cycle $C_{2 k+1}$!

What stronger promise can we give?

Given two graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, a graph homomorphism $G \rightarrow H$ is a mapping $h: V_{G} \rightarrow V_{H}$ that preserves edges,

$$
(u, v) \in E_{G} \Rightarrow(h(u), h(v)) \in E_{H} .
$$

Example. A colouring of a graph G with k colours is just a homomorphism $c: G \rightarrow K_{k}$.

Promise that the input graph maps to an odd cycle $C_{2 k+1}$!

What stronger promise can we give?

Given two graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, a graph homomorphism $G \rightarrow H$ is a mapping $h: V_{G} \rightarrow V_{H}$ that preserves edges,

$$
(u, v) \in E_{G} \Rightarrow(h(u), h(v)) \in E_{H} .
$$

Example. A colouring of a graph G with k colours is just a homomorphism $c: G \rightarrow K_{k}$.

Promise that the input graph maps to an odd cycle $C_{2 k+1}$!

The problem and its polymorphisms

The problem and its polymorphisms

The problem $\operatorname{PCSP}\left(C_{2 k+1}, K_{3}\right)$.
Given a graph G that is promised to map to $C_{2 k+1}$, find a 3-colouring:

$$
c: G \rightarrow K_{3}
$$

The problem and its polymorphisms

The problem $\operatorname{PCSP}\left(C_{2 k+1}, K_{3}\right)$.
Given a graph G that is promised to map to $C_{2 k+1}$, find a 3-colouring:

$$
c: G \rightarrow K_{3}
$$

Definition.

A polymorphism of $\operatorname{PCSP}\left(C_{2 k+1}, K_{3}\right)$ is a homomorphism $f: C_{2 k+1}^{n} \rightarrow K_{3}$, i.e., a mapping $f:[2 k+1]^{n} \rightarrow\{\bullet, \bullet, \bullet\}$ such that

$$
\left(f\left(u_{1}, \ldots, u_{n}\right), f\left(v_{1}, \ldots, v_{n}\right)\right) \in E_{K_{3}}
$$

whenever $\left(u_{i}, v_{i}\right) \in E_{C_{2 k+1}}$ for all $i \in[n]$.

$$
\operatorname{pol}\left(C_{2 k+1}, K_{3}\right)=\left\{f: C_{2 k+1}^{n} \rightarrow K_{3} \mid n=1,2, \ldots\right\}
$$

$\mathrm{C}_{9}{ }^{2}$

Polymorphisms $C_{7}{ }^{2} \rightarrow K_{3}$

Polymorphisms $C_{7}{ }^{2} \rightarrow K_{3}$

Polymorphisms $C_{7}{ }^{2} \rightarrow K_{3}$

Chapter II: Topology enters

Two continuous functions $f, g: X \rightarrow Y$ are said to be
homotopic
if is there is a continuous function $H: X \times[0,1] \rightarrow Y$ such that $H(0, x)=f(x)$ and

$$
H(1, x)=g(x)
$$

From graphs to topological spaces

From graphs to topological spaces

Graph \rightarrow Top

From graphs to topological spaces

Graph \rightarrow Top

For a finite set V, Δ^{V} is the standard simplex with V vertices, i.e.,

$$
\Delta^{V}=\left\{\lambda \in[0,1]^{V}: \sum_{v \in V} \lambda_{v}=1\right\}
$$

From graphs to topological spaces

Graph \rightarrow Top

For a finite set V, Δ^{V} is the standard simplex with V vertices, i.e.,

$$
\Delta^{V}=\left\{\lambda \in[0,1]^{V}: \sum_{v \in V} \lambda_{v}=1\right\}
$$

Let G be a graph, we construct a topological space $B \times(G)$ as the subspace of $\Delta^{V_{G}} \times \Delta^{V_{G}}$ consisting of points (λ, ρ) such that

$$
\left\{u: \lambda_{u}>0\right\} \times\left\{v: \rho_{v}>0\right\} \subseteq E_{G}
$$

$\mathrm{Bx}\left(K_{4}\right)$

$\mathrm{Bx}\left(K_{4}\right)$

$\mathrm{Bx}\left(K_{3}\right), \mathrm{Bx}\left(C_{5}\right), \ldots$

$\mathrm{Bx}\left(K_{3}\right), \mathrm{Bx}\left(C_{5}\right), \ldots$

$B \times\left(C_{2 k+1}{ }^{2}\right)$ *

*up to homotopy equivalence

Kneser's conjecture and Lovász's proof

Kneser graph $K(k, n)$ (where $2 n<k$) is the graph whose vertices are n-element subsets of $[k]$, and edges are disjoint sets.

$K(5,2)$

$K(5,1)$

Kneser's conjecture and Lovász's proof

Kneser graph $K(k, n)$ (where $2 n<k$) is the graph whose vertices are n-element subsets of $[k]$, and edges are disjoint sets.

$K(5,2)$

$K(5,1)$

Kneser's conjecture. The chromatic number of $K(2 n+k-2, n)$ is k.

Kneser's conjecture and Lovász's proof

Kneser graph $K(k, n)$ (where $2 n<k$) is the graph whose vertices are n-element subsets of $[k]$, and edges are disjoint sets.

$K(5,2)$

$K(5,1)$

Kneser's conjecture. The chromatic number of $K(2 n+k-2, n)$ is k.

$$
S^{k-2} \rightarrow \mathrm{Bx}(K(2 n+k-2, n)) \nrightarrow \mathrm{Bx}\left(K_{k-1}\right) \rightarrow S^{k-3}
$$

Borsuk-Ulam Theorem. There is no continuous map $f: S^{k+1} \rightarrow S^{k}$ such that $f(-x)=-f(x)$.

$$
S^{k}=\left\{x \in \mathbb{R}^{k+1} \mid\|x\|=1\right\}
$$

Chapter III: A minion homomorphism

- Start with a polymorphism

$$
f: C_{2 k+1}{ }^{n} \rightarrow K_{3} .
$$

Chapter III: A minion homomorphism

- Start with a polymorphism

$$
f: C_{2 k+1}{ }^{n} \rightarrow K_{3} .
$$

- Each such polymorphism induces a continuous map

$$
f^{\prime}: \mathrm{B} \times\left(C_{2 k+1}^{n}\right) \rightarrow \mathrm{B} \times\left(K_{3}\right),
$$

Chapter III: A minion homomorphism

- Start with a polymorphism

$$
f: C_{2 k+1}^{n} \rightarrow K_{3}
$$

- Each such polymorphism induces a continuous map

$$
f^{\prime}: T^{n} \rightarrow S^{1}
$$

s.t., $f\left(-x_{1}, \ldots,-x_{n}\right)=-f\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{array}{r}
T^{n}=\left(S^{1}\right)^{n}=S^{1} \times \cdots \times S^{1} \\
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
\end{array}
$$

Chapter III: A minion homomorphism

- Start with a polymorphism

$$
f: C_{2 k+1}^{n} \rightarrow K_{3}
$$

- Each such polymorphism induces a continuous map

$$
f^{\prime}: T^{n} \rightarrow S^{1}
$$

s.t., $f\left(-x_{1}, \ldots,-x_{n}\right)=-f\left(x_{1}, \ldots, x_{n}\right)$.

- Homotopy classes of continuous maps $T^{n} \rightarrow S^{1}$ are in 1-to-1 correspondence with linear maps

$$
f_{*}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}
$$

s.t., $f(1, \ldots, 1)$ is odd (Borsuk-Ulam Theorem).

$$
\begin{array}{r}
T^{n}=\left(S^{1}\right)^{n}=S^{1} \times \cdots \times S^{1} \\
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
\end{array}
$$

Chapter III: A minion homomorphism

- Start with a polymorphism

$$
f: C_{2 k+1}{ }^{n} \rightarrow K_{3} .
$$

- Each such polymorphism induces a continuous map

$$
f^{\prime}: T^{n} \rightarrow S^{1}
$$

s.t., $f\left(-x_{1}, \ldots,-x_{n}\right)=-f\left(x_{1}, \ldots, x_{n}\right)$.

- Homotopy classes of continuous maps $T^{n} \rightarrow S^{1}$ are in 1-to-1 correspondence with linear maps

$$
f_{*}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}
$$

s.t., $f(1, \ldots, 1)$ is odd (Borsuk-Ulam Theorem).

Altogether, we get a minion homomorphism:

$$
\xi: \operatorname{pol}\left(C_{2 k+1}, K_{3}\right) \rightarrow \operatorname{pol}(\mathbb{Z}) .
$$

defined by $\xi(f)=f_{*}$.

$$
\begin{array}{r}
T^{n}=\left(S^{1}\right)^{n}=S^{1} \times \cdots \times S^{1} \\
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
\end{array}
$$

A minion homomorphism

A minion homomorphism

Finale

Corollary [Barto, Bulin, Krokhin, O., '21].

Let Γ be a finite template promise CSP. If there is a minion homomorphism $\operatorname{pol}(\Gamma) \rightarrow \operatorname{pol}(\mathbb{Z})$ such that $\xi(f) \neq 0$ for all $f \in \operatorname{pol}(\Gamma)$, then Γ is NP-complete.

The minion homomorphism

$$
\xi: \operatorname{pol}\left(C_{2 k+1}, K_{3}\right) \rightarrow \operatorname{pol}(\mathbb{Z}) .
$$

satisfies the above.
Theorem [Krokhin, O., '19].
Colouring graphs that are promised to map homomorphically to $C_{(2 k+1)}$ with 3 colours is NP-hard.

Epilogue

Theorem [Krokhin, O., '19].

Colouring graphs that are promised to map homomorphically to $C_{(2 k+1)}$ with 3 colours is NP-hard.
*the proof was brought to you by [Wrochna, Živný, '20]
Krokhin, O., Wrochna, \& Živný. (2023). Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1), 38-79. arXiv:2003.11351, doi:10.1137/20M1378223

Epilogue

Theorem [Krokhin, O., '19].

Colouring graphs that are promised to map homomorphically to $C_{(2 k+1)}$ with 3 colours is NP-hard.
*the proof was brought to you by [Wrochna, Živný, '20]
Krokhin, O., Wrochna, \& Živný. (2023). Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1), 38-79. arXiv:2003.11351, doi:10.1137/20M1378223

Theorem [Filakovský, Nakajima, O., Tasinato, Wagner, STACS'24].

Linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs is NP-hard.

Filakovský, Nakajima, O., Tasinato, \& Wagner. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. STACS 2024.

Epilogue

Theorem [Krokhin, O., '19].

Colouring graphs that are promised to map homomorphically to $C_{(2 k+1)}$ with 3 colours is NP-hard.
*the proof was brought to you by [Wrochna, Živný, '20]
Krokhin, O., Wrochna, \& Živný. (2023). Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing, 52(1), 38-79. arXiv:2003.11351, doi:10.1137/20M1378223

Theorem [Filakovský, Nakajima, O., Tasinato, Wagner, STACS'24].

Linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs is NP-hard.

Filakovský, Nakajima, O., Tasinato, \& Wagner. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. STACS 2024.

