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Is there a polynomial time algorithm that colours a given 3-colourable graph by 3
colours?



Is there a polynomial time algorithm that colours a given 3-colourable graph by 3
colours?

No! (Unless P = NP) [Karp, 1972]



Is there a polynomial time algorithm that colours a given 3-colourable graph by 4
colours?

No! (Unless P = NP) [Khanna, Linial, Safra, 2000]



Is there a polynomial time algorithm that colours a given 3-colourable graph by 5
colours?

(We didn’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by 6
colours?

(We don’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by 7
colours?

(We don’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by 1729
colours?

(We don’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by 215
colours?

(We don’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by
O(log n) colours?

(We don’t know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by
O(n<1/5) colours?

Yes! [Kawarabayashi, Thorup, 2017]



Is there a polynomial time algorithm that colours a given 3-colourable graph by O(
√
n)

colours?

Yes! [Wigderson, 1982]



Is there a polynomial time algorithm that colours a given 3-colourable graph by 5
colours?

No! (Unless P = NP) [Bulín, Krokhin, O., 2019]



A black box: Algebraic approach

Theorem [Bulín, Krokhin, O., ‘19].
Let Γ and∆ be two promise CSPs. If there is a minion homomorphism pol(∆) → pol(Γ),
then there is a log-space reduction from Γ to∆.
(pol denotes the minion of all polymorphisms of the problem)

There is a minion homomorphism pol(∆) → pol(Γ) where

▶ ∆ is the problem of 27480-colouring 2-colourable 3-uniform hypergraphs,
which was proven to by NP-hard by [Dinur, Regev, Smyth, ‘05].

▶ Γ is 5-colouring 3-colourable graphs.

Corollary [Bulín, Krokhin, O., ‘19].
Colouring graphs that are promised to be 3-colourable with 5 colours is NP-hard. ■
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Chapter I: The story begins. . .

If colouring 3-colourable graphs with 3-colours is NP-hard, can we give a
stronger promise to make the problem easier?

Andrei Krokhin & O.
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What stronger promise can we give?

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is
a mapping h : VG → VH that preserves edges,

(u, v) ∈ EG ⇒ (h(u), h(v)) ∈ EH .

Example. A colouring of a graph G with k colours is just a homomorphism c : G → Kk .
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C9

Promise that the input graph maps to an odd cycle C2k+1!
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The problem and its polymorphisms

The problem PCSP(C2k+1,K3).
Given a graph G that is promised to map to C2k+1, find a 3-colouring:

c : G → K3

Definition.
A polymorphism of PCSP(C2k+1,K3) is a homomorphism f : Cn

2k+1 → K3, i.e., a
mapping f : [2k + 1]n → {•, •, •} such that

(f (u1, ... , un), f (v1, ... , vn)) ∈ EK3

whenever (ui , vi ) ∈ EC2k+1
for all i ∈ [n].

pol(C2k+1,K3) = {f : C n
2k+1 → K3 | n = 1, 2, ... }
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C9
2



Polymorphisms C7
2 → K3



Polymorphisms C7
2 → K3



Polymorphisms C7
2 → K3



Chapter II: Topology enters

Two continuous functions f , g : X → Y are said to be

homotopic

if is there is a continuous function H : X × [0, 1] → Y such that H(0, x) = f (x) and
H(1, x) = g(x).



From graphs to topological spaces

Graph → Top

For a finite set V ,∆V is the standard simplex with V vertices, i.e.,

∆V = {λ ∈ [0, 1]V :
∑
v∈V

λv = 1}.

Let G be a graph, we construct a topological space Bx(G ) as the subspace of
∆VG ×∆VG consisting of points (λ, ρ) such that

{u : λu > 0} × {v : ρv > 0} ⊆ EG .
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Bx(K4)



Bx(K3), Bx(C5), . . .
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Bx(K3), Bx(C5), . . .
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Bx(C2k+1
2)*

*up to homotopy equivalence



Kneser’s conjecture and Lovász’s proof

Kneser graph K (k, n) (where 2n < k ) is the graph whose vertices are n-element
subsets of [k], and edges are disjoint sets.
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Kneser’s conjecture. The chromatic number of K (2n + k − 2, n) is k .

Sk−2 → Bx(K (2n + k − 2, n)) ̸→ Bx(Kk−1) → Sk−3

Borsuk-Ulam Theorem. There is no continuous map f : Sk+1 → Sk such that f (−x) = −f (x).
Sk = {x ∈ Rk+1 | ∥x∥ = 1}
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Chapter III: A minion homomorphism

▶ Start with a polymorphism
f : C2k+1

n → K3.

▶ Each such polymorphism induces a continuous map

f ′ : Bx(C2k+1
n) → Bx(K3),

▶ Homotopy classes of continuous maps T n → S1 are in 1-to-1 correspondence
with linear maps

f ∗ : Zn → Z,

s.t., f (1, ... , 1) is odd (Borsuk-Ulam Theorem).

Altogether, we get a minion homomorphism:

ξ : pol(C2k+1,K3) → pol(Z).

defined by ξ(f ) = f ∗.
T n = (S1)n = S1 × · · · × S1

S1 = {(x , y) ∈ R2 | x2 + y 2 = 1}
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Finale

Corollary [Barto, Bulín, Krokhin, O., ‘21].

Let Γ be a finite template promise CSP. If there is a minion homomorphism
ξ : pol(Γ) → pol(Z) such that ξ(f ) ̸= 0 for all f ∈ pol(Γ), then Γ is NP-complete.

The minion homomorphism

ξ : pol(C2k+1,K3) → pol(Z).

satisfies the above.

Theorem [Krokhin, O., ‘19].
Colouring graphs that are promised to map homomorphically to C(2k+1) with 3 colours is
NP-hard.



Epilogue

Theorem [Krokhin, O., ‘19].
Colouring graphs that are promised to map homomorphically to C(2k+1) with 3 colours is
NP-hard.

*the proof was brought to you by [Wrochna, Živný, ‘20]

Krokhin, O., Wrochna, & Živný. (2023). Topology and adjunction in promise constraint satisfaction. SIAM
Journal on Computing, 52(1), 38–79. arXiv:2003.11351, doi:10.1137/20M1378223

Theorem [Filakovský, Nakajima, O., Tasinato, Wagner, STACS‘24].
Linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs is NP-hard.

Filakovský, Nakajima, O., Tasinato, & Wagner. (2024). Hardness of linearly ordered 4-colouring of
3-colourable 3-uniform hypergraphs. STACS 2024.

■
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