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Constraint Satisfaction Problem

CSP over a domain D
Given a conjunction of constraints over some variable set V of
the form

(v1, . . . , vk ) ∈ R

where R ⊆ Dk , decide whether there is an assignment s : V → D
such that all constraints are satisfied (i.e., (s(v1), . . . , s(vn)) ∈ R ).

CSP with fixed template D
Fix a relational structure D. CSP(D) is the problem to decide
whether a given a structure I in the same language maps
homomorphically to D, or not.



Examples of CSPs

SAT
Given a CNF formula, e.g.

(x ∨ y) ∧ (¬x ∨ z ∨ ¬w) ∧ (¬y ∨ z ∨ w),

decide whether there is a satisfying assignment.

3-coloring
Given a graph G, decide whether it is 3-colorable. This is CSP(K3).

SAT and 3-coloring are NP-complete [Karp, “72]



What makes a problem easy?

Answer. Symmetry!
[Barto]

I Aut(D) No! (Aut(K3) = Sym(K3), but CSP(K3) is NP-hard.)
I Set of polymorphisms of D. [Jeavong, Cohen, Gyssens, “97]

(Polymorphism of D is a homomorphism from Dn to D.)
I The abstract clone of polymorphisms of D. [Bulatov, Jeavons,

‘01; Bulatov, Jeavons, Krokhin, ‘05]
I Height 1 identities satisfied by polymorphisms of D. [Barto,

Pinksker, , ‘16]
Height 1 identity is an identity of the form

f (xπ(1), . . . , xπ(n)) ≈ g(xσ (1), . . . , xσ (m)).



Approximate graph coloring

Question
How hard is to color a given k -colorable graph by c colors?
[Garey, Johnson, “76]

I . . . a 3-colorable graph with 3 colors is NP-hard. [Karp, “72]
I . . . a 3-colorable graph with 4 colors is NP-hard.

[Guruswami, Khanna, ‘04]
I . . . a k -colorable graph with 2k − 2 colors is NP-hard.

[Brakensiek, Guruswami, ‘16]
I . . . a K -colorable graph with 2Ω(K 1/3) colors is NP-hard for

big-enough K . [Huang, ‘13]



Promise constraint satisfaction

Fix two finite relational structures A,B in the same finite
language with a homomorphism A→ B.

PCSP(A,B) is the following problem:

Search
Given a finite structure I that maps homomorphically to A,
find a homomorphism h : I→ B.

Decide
Given I arbitrary structure with the same language,
I ACCEPT if I→ A,
I REJECT if I 6→ B.



Example: 3-uniform hypergraph coloring

A valid coloring of a hypergraph H is a coloring of vertices of H
such that no edge is monochromatic.

Fix c ≥ k ≥ 2. The goal is to find c-colouring for a given
k -colourable 3-uniform hypergraph.

This is a PCSP with template (HK ,Hc) where

Hn = ({1, . . . , n};NAEn),

and NAEn = {(a, b, c) ∈ {1, . . . , n}3 | a 6= b ∨ a 6= c ∨ b 6= c}.

This was proven to be NP-hard [Dinur, Regev, Smyth, ‘05].



Example: 1-in-3- vs. NAE-SAT

I 1-in-3-SAT is CSP with the template T2 = ({0, 1};T ) where T
is the ternary relation satisfying ‘exactly one is 1’, i.e.
T = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.

I NAE-SAT is CSP with the template H2 = ({0, 1};NAE2)

Clearly, T ⊆ NAE2, and therefore T2 → H2.

The goal here is, given a solvable instance I of 1-in-3-SAT, find a
solution to I as a NAE-SAT instance.

Both 1-in-3-SAT and NAE-SAT are NP-complete, but PCSP(T2,H2)
is in P [Brakensiek, Guruswami, ‘16].



Symmetries of PCSP: Polymorphisms

Given relational structures A and B that share a signature.

We say that f : An → B is a polymorphism from A to B if one of
the following equivalent conditions is satisfied:

I f is a homomorphism from An to B,
I for each relation RA and all tuples a1, . . . , an ∈ RA we have

f (a1, . . . , an) ∈ RB.

The set of all polymorphisms from A to B is denoted by Pol(A,B).

Pol(A,B) is not closed under composition!



Minors and minions

Let f : An → B be a function. Any function g of the form

g(x1, . . . , xm) = f (xπ(1), . . . , xπ(n)).

for some π : [n]→ [m] is called a minor of f .

We call a set of functions from A to B, that is closed under taking
minors, a minion.

Theorem [Pippenger, ‘02; Brakiensiek, Guruswami, ‘16]
For all finite sets A, B and minion A on A and B there exist
relational structures A and B such that Pol(A,B) = A .



PCSP and Minions

The complexity of PCSP(A,B) is determined (up to poly-time
reductions) by:

I Set of polymorphisms from A to B. [Brakensiek, Guruswami,
‘16–‘18]

I The abstract minion of polymorphisms from A to B. [Bulín,
Krokhin, , ‘18]

Height 1 identities are natural for minions!



The main result

Given minions M and N , a minor homomorphism is a map
ξ : M → N that preserves arities, and preserves minors, i.e.,

ξ(f )(xπ(1), . . . , xπ(n)) = ξ(f (xπ(1), . . . , xπ(n)))

for all f ∈M (n) and π : [n]→ [m].

Minor homomorphisms preserve height 1 identities.

Theorem [Bulín, Krokhin, , ‘18]
If there is a minor homomorphism ξ : Pol(A1,B1)→ Pol(A2,B2),
then PCSP(A2,B2) is log-space reducible to PCSP(A1,B1).



Example: Graph coloring from hypergraph
coloring

Claim. It is NP-hard to distinguish between a graph that is
3-colorable and one that is not 5-colorable. Equivalently,
PCSP(K3,K5) is NP-hard.

Theorem [Dinur, Regev, Smyth, ’05]
PCSP(H2,HK ) is NP-hard for all K ≥ 2.

Key point. There is a minor homomorphism from Pol(K3,K5)
to Pol(H2,HK ).



Intermediate problem: Deciding identities

A minor (Maltsev) condition is a finite set of identities (functional
equations) of the form

f (xπ(1), . . . , xπ(n)) ≈ g(x1, . . . , xm)

for some π : [n]→ [m].

Function symbols are variables! I.e., we usually ask for functions
that satisfy the identities.

MC(N):
Given is a minor condition Σ that involves at most N-ary function
symbols, decide whether the condition is satisfied by projections.



Example: From PCSP(NAE2,NAEK ) to MC(6)

I For each vertex v introduce a binary symbol tv into V.
I For each edge e = (v1, v2, v3), introduce a 6-ary fe into U , and

add constraints:

fe(x, x, y, y, y, x) ≈ tv1 (x, y)
fe(x, y, x, y, x, y) ≈ tv2 (x, y)
fe(y, x, x, x, y, y) ≈ tv3 (x, y)

Few observations.
I A solution to the MC instance gives a solution to CSP(NAE2).
I It is enough to have a solution in Pol(NAE2,NAEK ): The

assignment v 7→ tv (0, 1) is a solution.



From minor conditions to PCSP

Hint
We can ask Is this minor condition satisfied by polymorphisms
from A to B? as an instance of CSP(B).

I We use just A to construct the instance!
I Warning! The structure is of exponential size in N.



Example: The reduction (Step 1)

1. Construct a graph F with vertex set VF = Pol(2)(K3,K5),
three vertices f , g, and h are connected with an edge if there
is a 6-ary polymorphism o s.t.

o(x, x, y, y, y, x) ≈ f (x, y)
o(x, y, x, y, x, y) ≈ g(x, y)
o(y, x, x, x, y, y) ≈ h(x, y)

Observation. As long as such F has no loop (does not contain
edge (a, a, a)), it is K -colorable for some K .



Example: A graph that is not 5-colorable

Claim. Pol(K3,K5) does not have a polymorphism o satisfying
(Olšák polymorphism)

o(x, x, y, y, y, x) ≈ o(x, y, x, y, x, y) ≈ o(y, x, x, x, y, y).

Such polymorphism would give a 5-coloring of:

100 011 ≈ 010 101 ≈ 001 110

121 212 ≈ 112 221 ≈ 211 122

220 002 ≈ 022 200 ≈ 202 020

012 120

120 201

201 012



Free structure

Given a minion M and a PCSP template (A,B). Assume A = [n].
We define the free structure of M generated by A to be a
structure F similar to A:

I F = M n.
I RF consists of those k -tuples of functions (f1, . . . , fk ) for

which there exists g ∈M and r1, . . . , rm ∈ RA s.t.

g(xr1(i), . . . , xrm(i)) ≈ fi(x1, . . . , xn)

for each i = 1, . . . , k .

The graph before was a free hypergraph of Pol(K3,K5) generated
by H2.



Free structure (cont.)

Theorem [Bulín, Krokhin, , ‘18]
There is a 1-to-1 correspondence between homomorphisms
form the free structure of M generated by A to B and minor
homomorphisms from M to Pol(A,B).

In particular, this shows that there is a minor homomorphism
from Pol(K3,K5) to Pol(H2,H458).



Example: The reduction (Step 2)

2. Starting with a hypergraph G, construct a graph CG :
I for each vertex v take a copy of K2

3 (expressing existence of
binary polymorphism gv from K3),

I for each edge (u, v, w) express that gu, gv , and gw are
connected by a 6-ary Olšák-like polymorphism.



Example: The reduction (Step 3)

3. If G is 2-colorable hypergraph, then CG is a 3-colorable
graph.

And if CG maps to B, then G maps to F, and therefore it is
K -colorable.

Theorem [Bulín, Krokhin, , ‘18]
It is NP-hard to color a k -colorable graph with 2k − 1 colors.



Conclusions

Theorem [Bulín, Krokhin, , ‘18]
If there is a minor homomorphism ξ : Pol(A1,B1)→ Pol(A2,B2),
then PCSP(A2,B2) is log-space reducible to PCSP(A1,B1).

Theorem [Bulín, Krokhin, , ‘18]
For all k ≥ 3, it is NP-hard to color a k -colorable graph with 2k − 1
colors.
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