Promise constraint satisfaction

Jakub Opršal (TU Dresden)
Joint work with Jakub Bulín, Andrei Krokhin, and others

Krkonoše, Sep 4, 2018

This project has received funding from the European Research Council (ERC) under the European
Union's Horizon 2020 research and innovation programme (grant agreement No. 681988)

Constraint Satisfaction Problem

CSP over a domain D
Given a conjunction of constraints over some variable set V of the form

$$
\left(v_{1}, \ldots, v_{k}\right) \in R
$$

where $R \subseteq D^{k}$, decide whether there is an assignment $s: V \rightarrow D$ such that all constraints are satisfied (i.e., $\left(s\left(v_{1}\right), \ldots, s\left(v_{n}\right)\right) \in R$).

CSP with fixed template D
Fix a relational structure D . $\operatorname{CSP}(\mathrm{D})$ is the problem to decide whether a given a structure I in the same language maps homomorphically to D, or not.

Examples of CSPs

SAT
Given a CNF formula, e.g.

$$
(x \vee y) \wedge(\neg x \vee z \vee \neg w) \wedge(\neg y \vee z \vee w)
$$

decide whether there is a satisfying assignment.
3-coloring
Given a graph G , decide whether it is 3 -colorable. This is $\operatorname{CSP}\left(\mathrm{K}_{3}\right)$.
SAT and 3-coloring are NP-complete [Karp, "72]

What makes a problem easy?

Answer. Symmetry!

[Barto]

- $\operatorname{Aut}(\mathrm{D}) \mathrm{No!}\left(\operatorname{Aut}\left(\mathrm{~K}_{3}\right)=\operatorname{Sym}\left(\mathrm{K}_{3}\right)\right.$, but $\operatorname{CSP}\left(\mathrm{K}_{3}\right)$ is NP -hard. $)$
- Set of polymorphisms of D. [Jeavong, Cohen, Gyssens, "97] (Polymorphism of D is a homomorphism from D^{n} to D .)
- The abstract clone of polymorphisms of D. [Bulatov, Jeavons, '01; Bulatov, Jeavons, Krokhin, '05]
- Height 1 identities satisfied by polymorphisms of D. [Barto, Pinksker, \qquad , '16]
Height 1 identity is an identity of the form

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx g\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right) .
$$

Approximate graph coloring

Question

How hard is to color a given k-colorable graph by c colors?
[Garey, Johnson, "76]

- ... a 3-colorable graph with 3 colors is NP-hard. [Karp, "72]
- ... a 3-colorable graph with 4 colors is NP-hard.
[Guruswami, Khanna, '04]
- ...a k-colorable graph with $2 k-2$ colors is NP-hard.
[Brakensiek, Guruswami, '16]
- ... a K-colorable graph with $2^{\Omega\left(K^{1 / 3}\right)}$ colors is NP-hard for big-enough K. [Huang, '13]

Promise constraint satisfaction

Fix two finite relational structures A, B in the same finite language with a homomorphism $\mathrm{A} \rightarrow \mathrm{B}$.
$\operatorname{PCSP}(\mathrm{A}, \mathrm{B})$ is the following problem:
Search
Given a finite structure I that maps homomorphically to A, find a homomorphism $h: I \rightarrow B$.

Decide
Given I arbitrary structure with the same language,

- ACCEPT if $I \rightarrow A$,
- REJECT if $\mathrm{I} \nrightarrow \mathrm{B}$.

Example: 3-uniform hypergraph coloring

A valid coloring of a hypergraph H is a coloring of vertices of H such that no edge is monochromatic.

Fix $c \geq k \geq 2$. The goal is to find c-colouring for a given k-colourable 3-uniform hypergraph.

This is a PCSP with template $\left(\mathrm{H}_{K}, \mathrm{H}_{c}\right)$ where

$$
\mathrm{H}_{n}=\left(\{1, \ldots, n\} ; \mathrm{NAE}_{n}\right),
$$

and $\operatorname{NAE}_{n}=\left\{(a, b, c) \in\{1, \ldots, n\}^{3} \mid a \neq b \vee a \neq c \vee b \neq c\right\}$.
This was proven to be NP-hard [Dinur, Regev, Smyth, '05].

Example: 1-in-3- vs. NAE-SAT

- 1-in-3-SAT is CSP with the template $\mathrm{T}_{2}=(\{0,1\} ; T)$ where T is the ternary relation satisfying 'exactly one is 1 ', i.e. $T=\{(0,0,1),(0,1,0),(1,0,0)\}$.
- NAE-SAT is CSP with the template $\mathrm{H}_{2}=\left(\{0,1\} ;\right.$ NAE $\left._{2}\right)$

Clearly, $T \subseteq \mathrm{NAE}_{2}$, and therefore $\mathrm{T}_{2} \rightarrow \mathrm{H}_{2}$.
The goal here is, given a solvable instance I of 1-in-3-SAT, find a solution to I as a NAE-SAT instance.

Both 1-in-3-SAT and NAE-SAT are NP-complete, but $\operatorname{PCSP}\left(\mathrm{T}_{2}, \mathrm{H}_{2}\right)$ is in P [Brakensiek, Guruswami, '16].

Symmetries of PCSP: Polymorphisms

Given relational structures A and B that share a signature.
We say that $f: A^{n} \rightarrow B$ is a polymorphism from A to B if one of the following equivalent conditions is satisfied:

- f is a homomorphism from A^{n} to B ,
- for each relation R^{A} and all tuples $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in R^{\mathrm{A}}$ we have

$$
f\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) \in R^{\mathrm{B}} .
$$

The set of all polymorphisms from A to B is denoted by $\operatorname{Pol}(\mathrm{A}, \mathrm{B})$.
$\operatorname{Pol}(A, B)$ is not closed under composition!

Minors and minions

Let $f: A^{n} \rightarrow B$ be a function. Any function g of the form

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) .
$$

for some $\pi:[n] \rightarrow[m]$ is called a minor of f.
We call a set of functions from A to B, that is closed under taking minors, a minion.

Theorem [Pippenger, '02; Brakiensiek, Guruswami, '16]
For all finite sets A, B and minion \mathscr{A} on A and B there exist relational structures A and B such that $\operatorname{Pol}(\mathrm{A}, \mathrm{B})=\mathscr{A}$.

PCSP and Minions

The complexity of $\operatorname{PCSP}(A, B)$ is determined (up to poly-time reductions) by:

- Set of polymorphisms from A to B. [Brakensiek, Guruswami, '16-'18]
- The abstract minion of polymorphisms from A to B. [Bulín, Krokhin, \qquad , '18]

Height 1 identities are natural for minions!

The main result

Given minions \mathscr{M} and \mathscr{N}, a minor homomorphism is a map $\xi: \mathscr{M} \rightarrow \mathscr{N}$ that preserves arities, and preserves minors, i.e.,

$$
\xi(f)\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=\xi\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right)
$$

for all $f \in \mathscr{M}^{(n)}$ and $\pi:[n] \rightarrow[m]$.
Minor homomorphisms preserve height 1 identities.
Theorem [Bulín, Krokhin, \qquad , '18]
If there is a minor homomorphism $\xi: \operatorname{Pol}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right) \rightarrow \operatorname{Pol}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$, then $\operatorname{PCSP}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$ is log-space reducible to $\operatorname{PCSP}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)$.

Example: Graph coloring from hypergraph coloring

Claim. It is NP-hard to distinguish between a graph that is 3-colorable and one that is not 5-colorable. Equivalently, $\operatorname{PCSP}\left(\mathrm{K}_{3}, \mathrm{~K}_{5}\right)$ is NP-hard.

Theorem [Dinur, Regev, Smyth, '05] $\operatorname{PCSP}\left(\mathrm{H}_{2}, \mathrm{H}_{K}\right)$ is NP-hard for all $K \geq 2$.

Key point. There is a minor homomorphism from $\operatorname{Pol}\left(\mathrm{K}_{3}, \mathrm{~K}_{5}\right)$ to $\operatorname{Pol}\left(\mathrm{H}_{2}, \mathrm{H}_{K}\right)$.

Intermediate problem: Deciding identities

A minor (Maltsev) condition is a finite set of identities (functional equations) of the form

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \approx g\left(x_{1}, \ldots, x_{m}\right)
$$

for some $\pi:[n] \rightarrow[m]$.
Function symbols are variables! I.e., we usually ask for functions that satisfy the identities.
MC(N):
Given is a minor condition Σ that involves at most N-ary function symbols, decide whether the condition is satisfied by projections.

Example: From PCSP(NAE ${ }_{2}$, NAE $\left._{K}\right)$ to MC(6)

- For each vertex v introduce a binary symbol t_{v} into \mathcal{V}.
- For each edge $e=\left(v_{1}, v_{2}, v_{3}\right)$, introduce a 6-ary f_{e} into U, and add constraints:

$$
\begin{aligned}
f_{e}(x, x, y, y, y, x) & \approx t_{v_{1}}(x, y) \\
f_{e}(x, y, x, y, x, y) & \approx t_{v_{2}}(x, y) \\
f_{e}(y, x, x, x, y, y) & \approx t_{v_{3}}(x, y)
\end{aligned}
$$

Few observations.

- A solution to the MC instance gives a solution to $\operatorname{CSP}\left(\mathrm{NAE}_{2}\right)$.
- It is enough to have a solution in $\operatorname{Pol}\left(\mathrm{NAE}_{2}, \mathrm{NAE}_{K}\right)$: The assignment $v \mapsto t_{v}(0,1)$ is a solution.

From minor conditions to PCSP

Hint
We can ask Is this minor condition satisfied by polymorphisms from A to B ? as an instance of $\operatorname{CSP}(B)$.

- We use just A to construct the instance!
- Warning! The structure is of exponential size in N.

Example: The reduction (Step 1)

1. Construct a graph F with vertex set $V_{F}=\operatorname{Pol}^{(2)}\left(K_{3}, K_{5}\right)$, three vertices f, g, and h are connected with an edge if there is a 6-ary polymorphism o s.t.

$$
\begin{aligned}
& o(x, x, y, y, y, x) \approx f(x, y) \\
& o(x, y, x, y, x, y) \approx g(x, y) \\
& o(y, x, x, x, y, y) \approx h(x, y)
\end{aligned}
$$

Observation. As long as such F has no loop (does not contain edge (a, a, a), it is K-colorable for some K.

Example: A graph that is not 5-colorable

Claim. Pol $\left(\mathrm{K}_{3}, \mathrm{~K}_{5}\right)$ does not have a polymorphism o satisfying (Olšák polymorphism)

$$
o(x, x, y, y, y, x) \approx o(x, y, x, y, x, y) \approx o(y, x, x, x, y, y) .
$$

Such polymorphism would give a 5 -coloring of:

Free structure

Given a minion \mathscr{M} and a PCSP template (A, B). Assume $A=[n]$. We define the free structure of \mathscr{M} generated by A to be a structure F similar to A :

- $F=\mathscr{M}^{n}$.
- R^{F} consists of those k-tuples of functions $\left(f_{1}, \ldots, f_{k}\right)$ for which there exists $g \in \mathscr{M}$ and $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m} \in R^{\mathrm{A}}$ s.t.

$$
g\left(x_{\mathbf{r}_{1}(i)}, \ldots, x_{\mathbf{r}_{m}(i)}\right) \approx f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

for each $i=1, \ldots, k$.
The graph before was a free hypergraph of $\operatorname{Pol}\left(\mathrm{K}_{3}, \mathrm{~K}_{5}\right)$ generated by H_{2}.

Free structure (cont.)

Theorem [Bulín, Krokhin, _, '18]
There is a 1-to-1 correspondence between homomorphisms form the free structure of M generated by A to B and minor homomorphisms from M to $\operatorname{Pol}(A, B)$.

In particular, this shows that there is a minor homomorphism from $\operatorname{Pol}\left(\mathrm{K}_{3}, \mathrm{~K}_{5}\right)$ to $\operatorname{Pol}\left(\mathrm{H}_{2}, \mathrm{H}_{458}\right)$.

Example: The reduction (Step 2)

2. Starting with a hypergraph G , construct a graph C_{G} :

- for each vertex v take a copy of K_{3}^{2} (expressing existence of binary polymorphism g_{v} from K_{3}),

- for each edge (u, v, w) express that g_{u}, g_{v}, and g_{w} are connected by a 6-ary Olšák-like polymorphism.

Example: The reduction (Step 3)

3. If G is 2 -colorable hypergraph, then C_{G} is a 3 -colorable graph.

And if C_{G} maps to B , then G maps to F , and therefore it is K-colorable.

Theorem [Bulín, Krokhin, __ '18]
It is NP-hard to color a k-colorable graph with $2 k-1$ colors.

Conclusions

Theorem [Bulín, Krokhin, \qquad , '18] If there is a minor homomorphism $\xi: \operatorname{Pol}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right) \rightarrow \operatorname{Pol}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$, then $\operatorname{PCSP}\left(\mathrm{A}_{2}, \mathrm{~B}_{2}\right)$ is \log-space reducible to $\operatorname{PCSP}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)$.

Theorem [Bulín, Krokhin, \qquad , '18]
For all $k \geq 3$, it is NP-hard to color a k-colorable graph with $2 k-1$ colors.

