Promises, constraint satisfaction, and problems

 Beyond universal algebra (part II)Jakub Opršal

AAA 100, 7 Feb 2021

overview

Part I (yesterday)

- algebraic approach to (promise) constraint satisfaction.

Part II (today)

- beyond algebraic approach
- open problems

previously on this tutorial...

Theorem. [Barto, Bulín, Krokhin, O, '19]

The following are equivalent for all pairs of similar relational structures $\mathbf{A}_{1}, \mathbf{A}_{2}$ and $\mathbf{B}_{1}, \mathbf{B}_{2}$:

1. there is a gadget reduction from $\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ to $\operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
2. $\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$ is a homomorphic relaxation a pp-power of $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$;
3. there is a minion homomorphism from $\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ to $\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$.

previously on this tutorial...

$\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\Sigma_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathbf{A}_{1}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$
$\mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$
Generalised loop conditions $\mathbf{C} \mapsto \Sigma(\mathbf{A}, \mathbf{C})$;
Free structure $\mathscr{M} \mapsto \mathbf{F}_{\mathscr{M}}(\mathbf{A})$;
Indicator structure $\Sigma \mapsto \mathrm{I}_{\mathbf{A}}(\Sigma)$,
Polymorphisms $\mathbf{C} \mapsto \operatorname{pol}(\mathbf{A}, \mathbf{C})$

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

application of part i

Theorem. [Dinur, Regev, Smyth, '05]
For all $k \geq 2, \operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{H}_{k}\right)$ is NP-hard.
H_{k} is the structure with domain $H_{k}=[k]$ and one ternary relation nae $_{k}=[k]^{3} \backslash\{(a, a, a) \mid a \in[k]\}$.

Goal. a reduction from $\operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{H}_{k}\right)$ to $\operatorname{PCSP}\left(K_{3}, K_{5}\right)$.

$$
\operatorname{PCSP}\left(\mathbf{H}_{2}, \mathbf{F}_{\mathscr{K}_{3,5}}\left(\mathbf{H}_{2}\right)\right) \xrightarrow{\Sigma_{\mathbf{H}_{2}}} \operatorname{PCSP}\left(\mathscr{P}, \mathscr{K}_{3,5}\right) \xrightarrow{\mathbf{I}_{K_{3}}} \operatorname{PCSP}\left(K_{3}, K_{5}\right)
$$

where $\mathscr{K}_{3,5}=\operatorname{pol}\left(K_{3}, K_{5}\right)$.
Need. $\quad \mathbf{F}_{\mathscr{K}_{3,5}}\left(\mathbf{H}_{2}\right) \rightarrow \mathbf{H}_{n}$ for some n.

$\mathbf{F}_{\mathrm{pol}\left(K_{3}, K_{5}\right)}\left(\mathbf{H}_{2}\right)$

- vertices: $F=\operatorname{pol}^{(2)}\left(K_{3}, K_{5}\right)$,
- hyperedges: $\left(f_{1}, f_{2}, f_{3}\right) \in R^{\mathbf{F}}$ if $\exists g \in \operatorname{pol}^{(6)}\left(K_{3}, K_{5}\right)$ with

$$
\begin{aligned}
& f_{1}(x, y) \approx g(x, x, y, y, y, x) \\
& f_{2}(x, y) \approx g(x, y, x, y, x, y) \\
& f_{3}(x, y) \approx g(y, x, x, x, y, y) .
\end{aligned}
$$

Claim. $\quad \mathbf{F}_{\text {pol }\left(K_{3}, K_{5}\right)}\left(\mathbf{H}_{2}\right) \rightarrow \mathbf{H}_{n}$ for some n.
Since \mathbf{F} is finite, it is enough to show that \mathbf{F} does not have a 'hyperloop' (f, f, f). Such a hyperloop would give

$$
g(x, x, y, y, y, x) \approx g(x, y, x, y, x, y) \approx g(y, x, x, x, y, y)
$$

a.k.a. an Olšák polymorphism.

without Olšák things are hard

Proof. $\mathbf{I}_{\mathbf{K}_{3}}$ (Olšák) contains:

Corollary [Bulín, Krokhin, Opršal, '19]
For all $d \geq 3, \operatorname{PCSP}\left(K_{d}, K_{2 d-1}\right)$ is NP-hard.
Corollary
If $\operatorname{pol}(\mathbf{A}, \mathbf{B})$ contains no Olšák function, then $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is NP-hard.

previously on this tutorial...

$\operatorname{PCSP}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right) \xrightarrow{\Sigma_{\mathbf{B}_{1}}} \operatorname{PCSP}(\mathscr{P}, \mathscr{B}) \xrightarrow{\text { id }} \operatorname{PCSP}(\mathscr{P}, \mathscr{A}) \xrightarrow{\mathbf{A}_{1}} \operatorname{PCSP}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$
$\mathscr{A}=\operatorname{pol}\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right), \mathscr{B}=\operatorname{pol}\left(\mathbf{B}_{1}, \mathbf{B}_{2}\right)$
Generalised loop conditions $\mathbf{C} \mapsto \Sigma(\mathbf{A}, \mathbf{C})$;
Free structure $\mathscr{M} \mapsto \mathbf{F}_{\mathscr{M}}(\mathbf{A})$;
Indicator structure $\Sigma \mapsto \mathrm{I}_{\mathbf{A}}(\Sigma)$,
Polymorphisms $\mathbf{C} \mapsto \operatorname{pol}(\mathbf{A}, \mathbf{C})$

$$
\begin{array}{rll}
\Sigma(\mathbf{A}, \mathbf{B}) \rightarrow \mathscr{M} & \text { iff } & \mathbf{B} \rightarrow \mathbf{F}_{\mathscr{M}}(\mathbf{A}) \\
\mathrm{I}_{\mathbf{A}}(\Sigma) \rightarrow \mathbf{B} & \text { iff } & \Sigma \rightarrow \operatorname{pol}(\mathbf{A}, \mathbf{B})
\end{array}
$$

beyond gadget reductions

history of promises

Austrin, Guruswami, Håstad. $(2+\epsilon)$-Sat is NP-hard, SICOMP 2017.
Theorem. [Austrin, Guruswami, Håstad, '17]
PCSP $((2 k+1)$-Sat, $(k, 2 k+1)$-Sat $)$ is NP-hard.
(k, g)-Sat requires that in an instance of g-Sat at least k literals are satisfied in each clause.

$$
R_{\left(a_{1}, \ldots, a_{g}\right)}=\left\{\left(b_{1}, \ldots, b_{g}\right): \#\left\{i \mid b_{i} \neq a_{i}\right\} \geq k\right\}
$$

Proof.
Invent polymorphisms and reduce from a version of the PCP theorem [Arora, Safra, "98].

the PCP theorem

PCP stands for 'probabilistically checkable proofs', but the theorem can be formulated as an inapproximability of the CSP:

Theorem. [Arora, Safra, '98]
There exists a (Boolean) CSP template \mathbf{D} and $\epsilon<1$ such that given an instance of CSP(D), it is NP-hard to distinguish between the following two cases:

- accept if the instance is solvable,
- reject if at most ϵ-fraction of constraints can be satisfied.

$\operatorname{CSP}\left(K_{3}\right) \xrightarrow{\mathrm{PCP}} \operatorname{PCSP}(\mathscr{P}, \mathscr{M}) \xrightarrow{\mathrm{I}_{\mathrm{A}}} \operatorname{PCSP}(\mathbf{A}, \mathbf{B})$

Corollary [Raz, '98; et al.]

For all $\epsilon>0$, there exists N such that: Given a minor condition Σ of arity at most N, it is NP-hard to distinguish the following two cases:

- accept if Σ is trivial
- reject if at most ϵ-fraction of identities in Σ can be simultaneously satisfied by projections.

In CS literature, this problem is referred to as label cover.

- most hardness results in PCSP are obtained by reduction from the PCP theorem via some version of label cover.
- to obtain new hardness results, often a new stronger version of hardness of label cover is needed. [DRS'05, BG'18, BWŽ'20]

$\operatorname{CSP}\left(K_{3}\right) \xrightarrow{\mathrm{PCP}} \operatorname{PCSP}(\mathscr{P}, \mathscr{M}) \xrightarrow{\mathrm{I}_{\mathrm{A}}} \operatorname{PCSP}(\mathbf{A}, \mathbf{B})$

Corollary [Austrin, Guruswami, Håstad, '17]
If pol (\mathbf{A}, \mathbf{B}) has bounded essential arity then $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is NP-hard.
(A minion \mathscr{M} has bounded essential arity k, if every $f \in \mathscr{M}$ is a minor of a function of arity k.)

Unlike for CSPs,

- no finite set of identities can imply tractability of a PCSP!
- there are many PCSPs whose hardness cannot be explained by the algebraic approach!

This calls for reductions that are better than gadgets reductions!

beyond gadget reductions

[Wrochna, Živný, '20]

- use the arc-graph pp-power as a reduction - this is the other way than you would expect!
- they obtain hardness of $\operatorname{PCSP}\left(K_{k}, K_{\left(\left\lfloor k^{k} / 2\right\rfloor\right)-1}\right)$ for all $k \geq 4$.
[Barto, Kozik, '20+] (csp-seminar.org/talks/libor-barto/).
- describe a sufficient condition for reducing one PCSP to another this condition is given by weakening minion homomorphisms to ' ϵ-homomorphisms' (list homomorphisms).
- this show hardness of PCSP with polymorphisms of bounded essential arity without the PCP theorem!
problems

search vs. decision

Search. Given a finite structure I that maps homomorphically to A, find a homomorphism $h: \mathbf{I} \rightarrow \mathbf{B}$.

Decide. Given I arbitrary structure with the same language,

- accept if I $\rightarrow \mathbf{A}$,
- reject if $\mathbf{I} \nrightarrow \mathbf{B}$.

Problem 1
Does search always belong to the same complexity class as decision?

complexity of concrete templates

Problem 2
Fix \mathbf{A}, classify how the complexity of $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ depends on \mathbf{B}.

- can be sold as approximation variant of $\operatorname{CSP}(\mathbf{A})$,
- very few classification to-date: $\mathbf{A}=$ NAE-Sat [DRS05], some progress on $\mathbf{A}=1$-in-3-Sat [Barto, Battistelli, Berg, '21].
- can provide nice conditions for hardness (e.g., [DRS05] shows implies that absence of Olšák implies hardness).
- contains important special cases: $\mathbf{A}=K_{3}$ is the approximate graph colouring.

Conjecture 3 (Brakensiek-Guruswami)
For all non-bipartite loopless graphs G and $H, \operatorname{PCSP}(G, H)$ is NP-hard.

power of algorithms

Problem 4

Characterise applicability of some algorithm in solving PCSPs.

local consistency algorithm

Fix $k \in \mathbb{N}$. Given an instance \mathbf{I} of $\operatorname{CSP}(\mathbf{A})$:

1. for all subsets $K \subseteq I$ of size at most k :
let \mathcal{F}_{K} be the set of all partial homomorphisms $\mathbf{I} \rightarrow \mathbf{A}$ defined on K.
2. for all $K \subseteq L$:

- remove from \mathcal{F}_{L} all f^{\prime} s s.t. $\left.f\right|_{K} \notin \mathcal{F}_{K}$,
- remove from \mathcal{F}_{K} all f 's that do not extend to a member of \mathcal{F}_{L},

3. if $\mathcal{F}_{K}=\emptyset$ for some K, return False,
4. repeat (2) \& (3) as long as something changes, else return True.

For PCSP(A, B), run consistency on I as an instance of $\operatorname{CSP}(\mathbf{A})$. We require that any consistent instance \mathbf{I} has a homomorphism to \mathbf{B}.

Problem 5

Characterise all finite template PCSPs solvable by local consistency.

affine integer programming

The basic affine integer program for an instance I of $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is the following system of equations over \mathbb{Z} :

- variables are $v_{i, a}$ for all $i \in I, a \in A$, and $v_{i, a}$ for all $R, \mathbf{i} \in R^{1}, \mathbf{a} \in R^{\mathbf{A}}$,
- subject to

$$
\begin{aligned}
\sum_{a \in A} v_{i, a} & =1 & \text { for each } i \in I, \\
\sum_{\mathbf{a} \in R^{\mathbf{A}, \mathbf{a}_{j}=a}} v_{\mathbf{i}, \mathbf{a}} & =v_{\mathbf{i}_{j}, a} & \text { for each } R \text { and } \mathbf{i} \in R^{\prime} .
\end{aligned}
$$

This gives an algorithm for $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$: solve the BAIP of I over \mathbf{A}, and return True if it has a solution, else return False.

- The same as asking if $\Sigma(\mathbf{A}, \mathbf{I})$ is satisfied by affine functions over \mathbb{Z}.
- The applicability of BAIP are characterised via alternating functions.

linear programming

The basic linear program for an instance \mathbf{I} of $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is the same as BAIP with the exception that the variables are taking values in $\mathbb{Q} \cap[0,1]$.

- The same as asking if $\Sigma(\mathbf{A}, \mathbf{I})$ is satisfied by convex combinations over \mathbb{Q}.
- Such linear programs are solvable in polynomial time, and therefore give a polynomial time algorithm for PCSPs in a similar way as BAIP.
- The applicability of BLP is characterised by symmetric functions.

Problem 6
Is there a (finite template) $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ which is solvable by some level of Sherali-Adams but it is not solvable by local consistency?

Brakensiek-Guruswami algorithm

Assume \mathbf{I} is an instance of $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$.

1. solve the BLP program for I, if no solution return False, else pick a solution ${ }^{*} v$,
2. start with the BAIP for I with variables w_{-}, and add the equation $w_{-}=0$ whenever $v_{-}=0$.
3. solve the resulting AIP, if no solution return False else return True.

Theorem [Brakensiek, Guruswami, Wrochna, Živný, '20]

The above algorithm solves $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ iff pol (\mathbf{A}, \mathbf{B}) contains for all k a function f satisfying

$$
f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k+1}\right) \approx f\left(x_{\pi(1)}, \ldots, x_{\pi(k)}, y_{\sigma(1)}, \ldots, y_{\sigma(k+1)}\right)
$$

for all permutations π, σ.

an algorithm

- Every tractable PCSP that I am aware of is either a homomorphic relaxation of a finite template CSP with a Siggers polymorphism, or solvable by Brakensiek-Guruswami algorithm!
- Unfortunately, BG algorithm does not solve all CSPs with Siggers (e.g., $C_{2}+C_{3}$). We need a refinement.

Conjecture 7
When we replace LP with Sherali-Adams in the first step of BG algorithm, the resulting algorithm solves all finite template CSPs with Siggers polymorphism.

Prize for a negative answer. A bottle of fine single malt Scotch whisky.

