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overview

Part | (today)

P algebraic approach to (promise) constraint satisfaction.

Part Il (tomorrow)
» beyond algebraic approach
» open problems



warning!

Everything is finite! (Well, almost.)



warning!

I will not talk about Galois connections. Sorry, Reinhard.



warning!

There are no algebras in this talk!



warning!

Definitions ahead.
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an old story

dichotomy of Boolean CSPs
dichotomy of (undirected) graph CSPs
the dichotomy conjecture

pol-inv Galois correspondence

HSP closure

Taylor implies WNU

algorithms given WNU polymorphisms



a new story



reductions

Assume that A and B are two (finite) relational structures.

A reduction from CSP(pA) to CSP(A) is a mapping
A structures similar to pA — structures similar to A

such that
I — pA iff Al — A.



a gadget reduction A

X2 =Y1
[ )
X1 Y2
./ \.
d(x1, x2, y1,y2) = (x1,x2) € EA(y1,y2) € EA X2 = y1.

Example

2 2>
[ ]

0, 1
2
1 e ) N 2 =1~ —
o Ti\{j\:z\l
01 1

1 21

e — @

0_~



a pp-power p

pA is a pp-power of A.
Concretely, pA = (A%; EPP) where

((a]_, 22), (bl,bz)) S EpA
iff A= o(a1, a2, by, b2)
iff (a1, a2) € EAA (br, b)) € EA A ap = by

Observation

I — pA iff M — A



algebraic approach in a nutshell

Theorem

The following are equivalent for any finite relational structures
A, B:

1. there is a gadget reduction from CSP(B) to CSP(A);
2. Bis homomorphically equivalent to a pp-power of A;

3. thereis a minion (h1 clone) homomorphism from pol(A) to
pol(B).



promises



definition of promise contraint satisfaction

Fix two finite relational structures A, B in the same finite language
with a homomorphism A — B.

PCSP(A, B) is the following problem:

Search
Given a finite structure | that maps homomorphically to A,
find a homomorphism h: | — B.

Decide
Given | arbitrary structure with the same language,

> acceptifl — A,
» rejectifl 4 B.



example: 1in3- vs. NAE-Sat

» 1in3-Satis a CSP with the template T> = ({0, 1}; 1-in-3)
where 1-in-3 = {(0,0,1),(0,1,0),(1,0,0)}.

» NAE-Sat is a CSP with the template H, = ({0, 1}; nae»)
where nae, = {0,1}\ {(0,0,0),(1,1,1)}.

Clearly, 1-in-3 C naej, and therefore T, — Ho.

The goal here is, given a solvable instance | of 1in3-Sat, find a
solution to | as a NAE-Sat instance.

Both 1in3-Sat and NAE-Sat are NP-complete, but PCSP(T2, Hp) is
inP



reductions of promise problems

A reduction from PCSP(B1, B2) to PCSP(A1, Ay) is a mapping A:
such that

| - By = MM — A
I — By <= Al — A,

Example
Assuming A is the identity (do nothing):

|—>31:>|—>A1 iff Bl—>A1
|l —-B, <1 — Ay iff By<+ As.

Definition. We say that (B1, B;) is a homomorphic relaxation of
(Al, A2) if Bl — A1 and A2 — BQ.



reductions of promise problems
A reduction from PCSP(B1, B2) to PCSP(A1, Ay) is a mapping A:
such that
| - By = M\ — A
| — By, < A\l — As.
Example
Assuming ) is a gadget replacement, we have (for i = 1, 2)
I = pA; < Nl — A,

Therefore A is a reduction from PCSP(B1, By) to PCSP(A1, Ay) iff
Bl — pAl and ,OA2 — Bz.

Definition. We say that (pAi, pAy) is a pp-power of (A1, Ay).



Theorem ( )
The following are equivalent for finite structures Ay 2, By »:

1. there is a gadget reduction from PCSP(By, B,) to
PCSP(AL Az),'

2. (B1, By) is a homomorphic relaxation of a pp-power of (A1, A);



the best gadget reduction

PCSP(B1, By) 24 PCSP(2, 75) % PCSP(2, 74) 23 PCSP(A1, A3)

Both \; and )\, are essentially ‘gadget reductions’. | will also
describe the corresponding ‘pp-powers'.

> )\; and pj, so that
| > 1l <= Ml — A
> )y and pp, so that

2= A = M A



formulation of CSP(Z?)

Problem
Given a minor (strong Mal'cev) condition X, decide whether X is

trivial, i.e., satisfied by projections on a set of size at least 2.
A minor condition is a finite set of identities of the form
f(xﬂ"(l)i 1X7r(n)) ~ g(le me)

for some 7: [n] — [m]. We often use a shorthand /™ & g for the above.



p2:. polymorphisms

We say that f: A7 — As is a polymorphism from Ay to A; of arity
n if one of the following equivalent conditions is satisfied:

» fisa homomorphism from Af to A,
» for each relation RA1 and all tuples ag, ..., a, € R we have

f(ai,...,an) € R™>.

The set of all such polymorphisms of arity n is denoted by
pol") (A1, Az), and pol(A1, Az) = J,cxy pol (A1, Ay).



p2:. polymorphisms

If f € pol(™ (A1, Ay) and 7: [n] — [m], then
. (Xl, ,Xn) — f(Xﬂ(l), ,Xﬂ(n)) S p0|(m)(A1, Ag).

The function ™ is called the minor of f defined by .

A non-empty set of functions from a set A; to a set A, that is
closed under taking minors is called a function minion.

» any (function) clone is a function minion, & is the projection
minion.

» we say that a minor condition X is satisfied in .# (and write
> — H)ifthereis&: X — A s.t.

E(F)™ = ¢(g) for each identity ™ ~ g.



Ao PCSP(:@, %) — PCSP(Al, Az)

Given a minor condition X, construct an instance I, (X) of
PCSP(AL A2)3

» for each symbol f of arity nin X, take a copy of A7 with vertices
labelled by f(ay, ..., a,) for a;

» for each identity

F(Xn(1), o s Xn(m)) & 8(X0, o0y Xim)

where 7: [n] — [m], and a1, € Ay, identify vertices labelled

f(aw(l), ey aﬂ(,,)) and g(al, ey am).



A2 & po: the second reduction

Observation. For all C, we have

Y — pol(A;,C) <= Ia, (X)) — C.

Theorem
The indicator structure gives a reduction:

PCSP(2, pol(A1, As)) 25 PCSP(A;, A,)

Proof. We need to show that

1. if X is trivial, then 15, (X) — A4, and
2. if |A1(Z) — Ay then X — pO|(A1, Az)

(2) follows directly, but also (1) follows since &2 — pol(A;, A1).



)\12 PCSP(Bl, BQ) — PCSP(:@, %)

Starting with I similar to By, construct a minor condition X(By, I):

» foreach v € [, add to X a symbol f, of arity By,

» foreach (vi,...,v) € R', add to ¥ a symbol g,, _,,)r of arity R®,
and

» introduce identities

for (Xbys o Xby) R 8, v R(Xnn (1)) o0 Xr(1))

fu(Xbys o Xb,) R 8, v R(Xr (k) - 1 X (K))

where RB = {r; | i € [m]} and By = {b; | i € [n]}.



examples of conditions from structures

» > (Ks, ) is the Siggers identity!

vix,y,z) =s(x,y,z,x,y,2) ‘
vix,y,z) = s(y,x,x,2,2,y) x/—\y

» Y (K3, K3) is trivial!

» (T, O3) is ternary weak near unanimity!
(T is the template of 1in3-Sat.)

» 3 (1-in-k,inj, ),

whereinj, . = {(a1,...,ax) | aj € [n], a; # a;if i # j},
are (n, k) dissected weak near unanimity identities.



p1: the free structure

Given a minion .# and a (finite) structure B1, we define a structure
F.»(B1):

> the universe are the Bj-ary functions in ., i.e., F 4(By) = .48V,
» the relation RF is defined to contain all tuples (f, ..., f;) such that
thereis g € .#R™) and

Xy 0 X5,) m B(Xn (1) - Xr(1))

fie(Xbys 1 Xby) R (X (k) oo X ()

where RB = {r; | i € [m]} and By = {b; | i € [n]}.



A1 & p1: the first reduction

Observation. for all C, we have

C—F4(B1) < %(B1,C)— .«

Theorem
The assignment | — (B, 1) gives a reduction:

PCSP(B1, By) "% ) PCSP(2, pol(B1, By))



back to the whole reduction

PCSP(B1, By) 23 PCSP(2, %) % PCSP(2, /) 23 PCSP(A1, A3)

where </ = pol(A1, Az) and % = pol(By, By).

To make the middle reduction work, we need

PP and F — A.

A minion homomorphism is a mapping &: .4 — A s.t.
E(F)T =&(f7) forall 2 [n] — [m].

Such homomorphisms preserve satisfaction of minor conditions.



conclusion

Theorem

The following are equivalent for all pairs of similar relational
structures A1, As and By, B»:

1. thereis a gadget reduction from PCSP(B1, B) to
PCSP(Al, Az);
2. (B1, By) is a homomorphic relaxation a pp-power of (A, A);

3. thereis a minion homomorphism from pol(Az, A) to
poI(Bl, Bg).



conclusion

» Generalised loop conditions C — X (A, C);
» Free structure .7 — F_,(A);

» Indicator structure X — Ia(X),

» Polymorphisms C — pol(A, C).

Theorem

For a fixed finite structure A. The following equivalences hold for
all B a structure, .# a minion, and X minor condition.

S(AB)— .7 iff B—F ,(A) (1)
Ia(X) = B iff ¥ — pol(A, B) 2)
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credits

pol-inv Galois correspondence

polymorphisms in promise constraint satisfaction

inclusions of function minions
h1 clone homomorphisms for CSPs
minion homomorphisms

adjunctions
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